Impact of Ocean Acidification on Biochemical Components in Tropical Oyster, Crassostrea belcheri

Cherrie Teh, C.P.1,2*, Daphne Ling, H.A.1, Nithiyaa, N.1 and Aileen Tan S.H.1

1Marine Science Lab, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
2Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

*Corresponding author: cherrie_tcp@yahoo.com

Objectives:
1) To investigate the impact of the Ocean Acidification on biochemical component in tropical oyster, Crassostrea belcheri.
2) To compare the biochemical components of tropical oyster, Crassostrea belcheri of different gender.

Ocean Acidification, Present & in the Future
Ocean Acidification (OA) occurs as the seawater absorbed the atmospheric CO2 and the pH of ocean dropped. Normal seawater ranges from pH 8.1 to 8.3. Fig 1 showed the map of our present and future ocean pH (with/without CO2 reduction). Since the industrial revolution, seawater has dropped from pH 8.2 to 8.1. Even a decline in small amount of pH, it can alter the ability of the marine organism to form their shells. According to Kerr et al. (2014), most shells would quickly dissolved at pH 7.6. A lot of previous studies have tested the effects of pH on the marine taxons growth and shell formation, but there is no study conducted on the effects of pH on tropical oyster biochemical components. Therefore, this study integrates impact of ocean acidification on the biochemical components in tropical oyster, Crassostrea belcheri.

Results
Biochemical Components in Female Oysters
Total carbohydrate of female Crassostrea belcheri cultured at two sites showed significant different (Fig 2a). The female oysters at OA condition had lower total carbohydrate (5.03 ± 0.82 %), total lipid (3.09 ± 1.47 %) and total protein (17.75 ± 3.24 %) than the female oysters at normal seawater condition (carbohydrate: 6.94 ± 0.61 %; lipid: 3.72 ± 1.01 %; protein: 19.51 ± 2.99 %). The male oysters at OA condition have the same trend as female oysters, they have lower carbohydrate, lipid and protein content (5.07 ± 0.33 %, 2.77 ± 0.97 % and 16.56 ± 2.05 %). The male oysters cultured at normal sea condition had higher biochemical contents (carbohydrate: 6.64 ± 0.85 %; lipid: 4.04 ± 0.82 %; protein: 21.78 ± 1.56 %) (Fig 2b).

The absorption of anthropogenic CO2 into ocean is altering the ocean carbonate system and consequently decreased the pH in ocean. Poorly calcified larval shell may make shell prone to dissolution, early mortality, predators and may ultimately lead to low metamorphosis success. However, most of the study about ocean acidification impact on oysters was done on shell formation and growth (Barton et al., 2012; Gazeau et al., 2011; Ginger Ko et al., 2013; Hettinger et al., 2012; Parker et al., 2011; Watson et al., 2009).

Adult bivalves have fluctuation in the amount of storage and mobilization of energy reserve (carbohydrate) which are related to their reproduction and food availability in the environment (Dridi et al., 2007). Environmental parameters are the main factor contributing to the differences in the biochemical components of oysters in this project. Environment conditions like salinity, pH, temperature, food availability (level of nutrients) are affecting many life events of the bivalves like sexual maturation, reproduction cycles, growth, and maintenance (Choi et al., 1994; Matthiessen, 2008; Ruiz et al., 1992). The results are indicating that the environmental conditions at both culture sites have significant effects on the biochemical constituents in the each species of oysters. The location of the culture sites, one is at estuarine (Sungai Merbok) and another is the open sea condition (Pulau Betong) are generally different in pH, salinity and temperature. The most obvious differences between the two sites are the pH and the salinity. Salinities are related with the feeding activities and also the metabolic activities of the marine bivalves (Chesnut, 1946; Ganapathi Naik & Gowda, 2013). Temperature may have effects on the temperate species of oysters on their metabolic rate, but less effect on the tropical species of oysters where they are able to adapt to wide range of temperature. Besides the environmental parameters, these differences in locations have different food quantity, and also quality (species of the marine algae) (Pazos et al., 1996).

The absorption of anthropogenic CO2 into ocean is altering the ocean carbonate system and consequently decreased the pH in ocean. Poorly calcified larval shell may make shell prone to dissolution, early mortality, predators and may ultimately lead to low metamorphosis success. However, most of the study about ocean acidification impact on oysters was done on shell formation and growth (Barton et al., 2012; Gazeau et al., 2011; Ginger Ko et al., 2013; Hettinger et al., 2012; Parker et al., 2011; Watson et al., 2009).

CONCLUSION:
- Tropical Oyster, Crassostrea belcheri reared in low pH had LOWER BIOCHEMICAL VALUE.
- Biochemical Components for both female and male showed no significant different.

Acknowledgement
The authors thank Sabah Aquaculture Sdn Bhd for providing oyster broodstock. This study is supported by the Research University Grant of Universiti Sains Malaysia, ScienceFund (Award: 305/PPBLOGI/63417) and FRGS (Award: 203/PFSPDDA/810110).