Effects of elevated CO₂ on phytoplankton community biomass and species composition from the Western English Channel

Matthew Keys¹,², Gavin Tilstone¹, Helen Findlay¹, Karen Tait¹, Tracy Lawson²

¹ Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom, PL1 3DH
² University of Essex, School of Biological Sciences, Colchester, United Kingdom, CO4 3SQ

Background
Supporting an estimated 10-15% of global ocean net annual primary production, coastal zones may be responsible for more than 40% of oceanic carbon sequestration (Mueller-Karger, 2005). The surface ocean carbonate system is directly affected by increased atmospheric CO₂. The physiological response of phytoplankton to this changing environmental factor holds the potential to alter community composition, biomass and consequently primary production (Boyd & Doney, 2002).

Goal
To investigate the response in species composition and community biomass of a natural phytoplankton community to CO₂ enrichment during the spring bloom season.

Study site
Coastal station L4, situated within the Western English Channel Observatory. One of Europe’s principal coastal time series stations including 22 years of phytoplankton community structure.

L4 phytoplankton community time series
Drivers of the spring phytoplankton bloom formation at L4: Nitrate shows a negative relationship with chlorophyll a biomass while the relationship with silicate is positive, tracking temporal development of the diatom bloom. Evidence suggests that diatoms dominate Phaeocystis only when silicate concentrations are viable (Egge & Aksnes, 1992). At L4 however, irradiance has been shown to positively co-vari with Phaeocystis biomass. Fig. 1 shows the mean weekly biomass of diatoms and Phaeocystis between 1993-2014 (A) while (B) shows maximal values over this period. Both are major contributors to total community biomass in spring. Fig. 1 (C) shows seasonal trends of Phaeocystis at L4 by year (black line is weekly mean, grey area is standard deviation) and annual bloom period maxima above and below the time series mean maxima of ~40 mg C m⁻² (D).

Methods
- An intact phytoplankton community was sampled from 10m depth at L4 on 13th April 2015.
- 320L of seawater was collected for experimental media (0.2 and 0.1 µm sterile filtered).
- The community was incubated for 15 days in a semi-continuous batch culture system (n=8) (Fig. 3)
- The carbonate system of the media, not incubations, was adjusted to ~1,000 µatm (avoiding mechanical effects of bubbling that can impact sensitive species) (Fig. 2 A & B)
- Light, temperature and nutrient regime maintained at ~200 µmol photons m⁻² s⁻¹, 11° C, 8µM N, 0.5 µM P.
- Phytoplankton community was analysed and enumerated by flow cytometry and FlowCAM.
- Cell bio-volume was calculated according to Kovala and Larrance, (1966). Biomass (mg carbon m⁻²) was estimated according to the equations of Menden-Deuer & Lessard, (2000).

Results & Conclusions
• Starting community biomass estimated at ~160 mg C m⁻²; 40% nanophytoplankton, 30% Phaeocystis.
• Community biomass increased significantly to ~305 mg C m⁻² (~90%) in high CO₂ treatment (z = 3.536, p < 0.001) (Fig. 2). D.
• Ambient CO₂ showed no net gain in community biomass.
• Phaeocystis exhibited greatest response in high CO₂ treatment; significantly increased biomass >300% from 50 - ~200 mg C m⁻²; contributing 70% of community biomass (z = 3.219, p < 0.001) (Fig. 4)
• More subtle response observed in other components of community (Fig. 5, A, B & D).
• Diatoms: only group to show decreased biomass at elevated CO₂ compared to control (Fig. 5, C).
• Results suggest elevated CO₂ could favour sustained Phaeocystis populations over diatoms in late spring bloom period.
• At predicted 2100 atmospheric CO₂ concentrations, Phaeocystis may dominate the L4 spring phytoplankton bloom community structure, enhance CO₂ drawdown, but also cause an increase in noxious foam with possible consequences on fisheries and tourism.

References:
Menden-Deuer & Lessard, (2000). Biomass (mg carbon m⁻²) was estimated according to the equations of... Menden-Deuer & Lessard, (2000).